3.1.20 \(\int x^3 (d+c^2 d x^2)^3 (a+b \sinh ^{-1}(c x)) \, dx\) [20]

Optimal. Leaf size=199 \[ \frac {49 b d^3 x \sqrt {1+c^2 x^2}}{5120 c^3}+\frac {49 b d^3 x \left (1+c^2 x^2\right )^{3/2}}{7680 c^3}+\frac {49 b d^3 x \left (1+c^2 x^2\right )^{5/2}}{9600 c^3}+\frac {7 b d^3 x \left (1+c^2 x^2\right )^{7/2}}{1600 c^3}-\frac {b d^3 x \left (1+c^2 x^2\right )^{9/2}}{100 c^3}+\frac {49 b d^3 \sinh ^{-1}(c x)}{5120 c^4}-\frac {d^3 \left (1+c^2 x^2\right )^4 \left (a+b \sinh ^{-1}(c x)\right )}{8 c^4}+\frac {d^3 \left (1+c^2 x^2\right )^5 \left (a+b \sinh ^{-1}(c x)\right )}{10 c^4} \]

[Out]

49/7680*b*d^3*x*(c^2*x^2+1)^(3/2)/c^3+49/9600*b*d^3*x*(c^2*x^2+1)^(5/2)/c^3+7/1600*b*d^3*x*(c^2*x^2+1)^(7/2)/c
^3-1/100*b*d^3*x*(c^2*x^2+1)^(9/2)/c^3+49/5120*b*d^3*arcsinh(c*x)/c^4-1/8*d^3*(c^2*x^2+1)^4*(a+b*arcsinh(c*x))
/c^4+1/10*d^3*(c^2*x^2+1)^5*(a+b*arcsinh(c*x))/c^4+49/5120*b*d^3*x*(c^2*x^2+1)^(1/2)/c^3

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 199, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {272, 45, 5803, 12, 396, 201, 221} \begin {gather*} \frac {d^3 \left (c^2 x^2+1\right )^5 \left (a+b \sinh ^{-1}(c x)\right )}{10 c^4}-\frac {d^3 \left (c^2 x^2+1\right )^4 \left (a+b \sinh ^{-1}(c x)\right )}{8 c^4}+\frac {49 b d^3 \sinh ^{-1}(c x)}{5120 c^4}-\frac {b d^3 x \left (c^2 x^2+1\right )^{9/2}}{100 c^3}+\frac {7 b d^3 x \left (c^2 x^2+1\right )^{7/2}}{1600 c^3}+\frac {49 b d^3 x \left (c^2 x^2+1\right )^{5/2}}{9600 c^3}+\frac {49 b d^3 x \left (c^2 x^2+1\right )^{3/2}}{7680 c^3}+\frac {49 b d^3 x \sqrt {c^2 x^2+1}}{5120 c^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3*(d + c^2*d*x^2)^3*(a + b*ArcSinh[c*x]),x]

[Out]

(49*b*d^3*x*Sqrt[1 + c^2*x^2])/(5120*c^3) + (49*b*d^3*x*(1 + c^2*x^2)^(3/2))/(7680*c^3) + (49*b*d^3*x*(1 + c^2
*x^2)^(5/2))/(9600*c^3) + (7*b*d^3*x*(1 + c^2*x^2)^(7/2))/(1600*c^3) - (b*d^3*x*(1 + c^2*x^2)^(9/2))/(100*c^3)
 + (49*b*d^3*ArcSinh[c*x])/(5120*c^4) - (d^3*(1 + c^2*x^2)^4*(a + b*ArcSinh[c*x]))/(8*c^4) + (d^3*(1 + c^2*x^2
)^5*(a + b*ArcSinh[c*x]))/(10*c^4)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 201

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(n*p + 1)), x] + Dist[a*n*(p/(n*p + 1)),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 396

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(
p + 1) + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 5803

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSinh[c*x], u, x] - Dist[b*c, Int[SimplifyIntegrand[u/Sqrt[1
+ c^2*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && IGtQ[p, 0]

Rubi steps

\begin {align*} \int x^3 \left (d+c^2 d x^2\right )^3 \left (a+b \sinh ^{-1}(c x)\right ) \, dx &=-\frac {d^3 \left (1+c^2 x^2\right )^4 \left (a+b \sinh ^{-1}(c x)\right )}{8 c^4}+\frac {d^3 \left (1+c^2 x^2\right )^5 \left (a+b \sinh ^{-1}(c x)\right )}{10 c^4}-(b c) \int \frac {d^3 \left (1+c^2 x^2\right )^{7/2} \left (-1+4 c^2 x^2\right )}{40 c^4} \, dx\\ &=-\frac {d^3 \left (1+c^2 x^2\right )^4 \left (a+b \sinh ^{-1}(c x)\right )}{8 c^4}+\frac {d^3 \left (1+c^2 x^2\right )^5 \left (a+b \sinh ^{-1}(c x)\right )}{10 c^4}-\frac {\left (b d^3\right ) \int \left (1+c^2 x^2\right )^{7/2} \left (-1+4 c^2 x^2\right ) \, dx}{40 c^3}\\ &=-\frac {b d^3 x \left (1+c^2 x^2\right )^{9/2}}{100 c^3}-\frac {d^3 \left (1+c^2 x^2\right )^4 \left (a+b \sinh ^{-1}(c x)\right )}{8 c^4}+\frac {d^3 \left (1+c^2 x^2\right )^5 \left (a+b \sinh ^{-1}(c x)\right )}{10 c^4}+\frac {\left (7 b d^3\right ) \int \left (1+c^2 x^2\right )^{7/2} \, dx}{200 c^3}\\ &=\frac {7 b d^3 x \left (1+c^2 x^2\right )^{7/2}}{1600 c^3}-\frac {b d^3 x \left (1+c^2 x^2\right )^{9/2}}{100 c^3}-\frac {d^3 \left (1+c^2 x^2\right )^4 \left (a+b \sinh ^{-1}(c x)\right )}{8 c^4}+\frac {d^3 \left (1+c^2 x^2\right )^5 \left (a+b \sinh ^{-1}(c x)\right )}{10 c^4}+\frac {\left (49 b d^3\right ) \int \left (1+c^2 x^2\right )^{5/2} \, dx}{1600 c^3}\\ &=\frac {49 b d^3 x \left (1+c^2 x^2\right )^{5/2}}{9600 c^3}+\frac {7 b d^3 x \left (1+c^2 x^2\right )^{7/2}}{1600 c^3}-\frac {b d^3 x \left (1+c^2 x^2\right )^{9/2}}{100 c^3}-\frac {d^3 \left (1+c^2 x^2\right )^4 \left (a+b \sinh ^{-1}(c x)\right )}{8 c^4}+\frac {d^3 \left (1+c^2 x^2\right )^5 \left (a+b \sinh ^{-1}(c x)\right )}{10 c^4}+\frac {\left (49 b d^3\right ) \int \left (1+c^2 x^2\right )^{3/2} \, dx}{1920 c^3}\\ &=\frac {49 b d^3 x \left (1+c^2 x^2\right )^{3/2}}{7680 c^3}+\frac {49 b d^3 x \left (1+c^2 x^2\right )^{5/2}}{9600 c^3}+\frac {7 b d^3 x \left (1+c^2 x^2\right )^{7/2}}{1600 c^3}-\frac {b d^3 x \left (1+c^2 x^2\right )^{9/2}}{100 c^3}-\frac {d^3 \left (1+c^2 x^2\right )^4 \left (a+b \sinh ^{-1}(c x)\right )}{8 c^4}+\frac {d^3 \left (1+c^2 x^2\right )^5 \left (a+b \sinh ^{-1}(c x)\right )}{10 c^4}+\frac {\left (49 b d^3\right ) \int \sqrt {1+c^2 x^2} \, dx}{2560 c^3}\\ &=\frac {49 b d^3 x \sqrt {1+c^2 x^2}}{5120 c^3}+\frac {49 b d^3 x \left (1+c^2 x^2\right )^{3/2}}{7680 c^3}+\frac {49 b d^3 x \left (1+c^2 x^2\right )^{5/2}}{9600 c^3}+\frac {7 b d^3 x \left (1+c^2 x^2\right )^{7/2}}{1600 c^3}-\frac {b d^3 x \left (1+c^2 x^2\right )^{9/2}}{100 c^3}-\frac {d^3 \left (1+c^2 x^2\right )^4 \left (a+b \sinh ^{-1}(c x)\right )}{8 c^4}+\frac {d^3 \left (1+c^2 x^2\right )^5 \left (a+b \sinh ^{-1}(c x)\right )}{10 c^4}+\frac {\left (49 b d^3\right ) \int \frac {1}{\sqrt {1+c^2 x^2}} \, dx}{5120 c^3}\\ &=\frac {49 b d^3 x \sqrt {1+c^2 x^2}}{5120 c^3}+\frac {49 b d^3 x \left (1+c^2 x^2\right )^{3/2}}{7680 c^3}+\frac {49 b d^3 x \left (1+c^2 x^2\right )^{5/2}}{9600 c^3}+\frac {7 b d^3 x \left (1+c^2 x^2\right )^{7/2}}{1600 c^3}-\frac {b d^3 x \left (1+c^2 x^2\right )^{9/2}}{100 c^3}+\frac {49 b d^3 \sinh ^{-1}(c x)}{5120 c^4}-\frac {d^3 \left (1+c^2 x^2\right )^4 \left (a+b \sinh ^{-1}(c x)\right )}{8 c^4}+\frac {d^3 \left (1+c^2 x^2\right )^5 \left (a+b \sinh ^{-1}(c x)\right )}{10 c^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.08, size = 139, normalized size = 0.70 \begin {gather*} \frac {d^3 \left (1920 a c^4 x^4 \left (10+20 c^2 x^2+15 c^4 x^4+4 c^6 x^6\right )-b c x \sqrt {1+c^2 x^2} \left (-1185+790 c^2 x^2+3208 c^4 x^4+2736 c^6 x^6+768 c^8 x^8\right )+15 b \left (-79+1280 c^4 x^4+2560 c^6 x^6+1920 c^8 x^8+512 c^{10} x^{10}\right ) \sinh ^{-1}(c x)\right )}{76800 c^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^3*(d + c^2*d*x^2)^3*(a + b*ArcSinh[c*x]),x]

[Out]

(d^3*(1920*a*c^4*x^4*(10 + 20*c^2*x^2 + 15*c^4*x^4 + 4*c^6*x^6) - b*c*x*Sqrt[1 + c^2*x^2]*(-1185 + 790*c^2*x^2
 + 3208*c^4*x^4 + 2736*c^6*x^6 + 768*c^8*x^8) + 15*b*(-79 + 1280*c^4*x^4 + 2560*c^6*x^6 + 1920*c^8*x^8 + 512*c
^10*x^10)*ArcSinh[c*x]))/(76800*c^4)

________________________________________________________________________________________

Maple [A]
time = 1.79, size = 173, normalized size = 0.87

method result size
derivativedivides \(\frac {d^{3} a \left (\frac {\left (c^{2} x^{2}+1\right )^{5}}{10}-\frac {\left (c^{2} x^{2}+1\right )^{4}}{8}\right )+d^{3} b \left (\frac {\arcsinh \left (c x \right ) c^{10} x^{10}}{10}+\frac {3 \arcsinh \left (c x \right ) c^{8} x^{8}}{8}+\frac {\arcsinh \left (c x \right ) c^{6} x^{6}}{2}+\frac {\arcsinh \left (c x \right ) c^{4} x^{4}}{4}-\frac {79 \arcsinh \left (c x \right )}{5120}-\frac {c x \left (c^{2} x^{2}+1\right )^{\frac {9}{2}}}{100}+\frac {7 c x \left (c^{2} x^{2}+1\right )^{\frac {7}{2}}}{1600}+\frac {49 c x \left (c^{2} x^{2}+1\right )^{\frac {5}{2}}}{9600}+\frac {49 c x \left (c^{2} x^{2}+1\right )^{\frac {3}{2}}}{7680}+\frac {49 \sqrt {c^{2} x^{2}+1}\, c x}{5120}\right )}{c^{4}}\) \(173\)
default \(\frac {d^{3} a \left (\frac {\left (c^{2} x^{2}+1\right )^{5}}{10}-\frac {\left (c^{2} x^{2}+1\right )^{4}}{8}\right )+d^{3} b \left (\frac {\arcsinh \left (c x \right ) c^{10} x^{10}}{10}+\frac {3 \arcsinh \left (c x \right ) c^{8} x^{8}}{8}+\frac {\arcsinh \left (c x \right ) c^{6} x^{6}}{2}+\frac {\arcsinh \left (c x \right ) c^{4} x^{4}}{4}-\frac {79 \arcsinh \left (c x \right )}{5120}-\frac {c x \left (c^{2} x^{2}+1\right )^{\frac {9}{2}}}{100}+\frac {7 c x \left (c^{2} x^{2}+1\right )^{\frac {7}{2}}}{1600}+\frac {49 c x \left (c^{2} x^{2}+1\right )^{\frac {5}{2}}}{9600}+\frac {49 c x \left (c^{2} x^{2}+1\right )^{\frac {3}{2}}}{7680}+\frac {49 \sqrt {c^{2} x^{2}+1}\, c x}{5120}\right )}{c^{4}}\) \(173\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(c^2*d*x^2+d)^3*(a+b*arcsinh(c*x)),x,method=_RETURNVERBOSE)

[Out]

1/c^4*(d^3*a*(1/10*(c^2*x^2+1)^5-1/8*(c^2*x^2+1)^4)+d^3*b*(1/10*arcsinh(c*x)*c^10*x^10+3/8*arcsinh(c*x)*c^8*x^
8+1/2*arcsinh(c*x)*c^6*x^6+1/4*arcsinh(c*x)*c^4*x^4-79/5120*arcsinh(c*x)-1/100*c*x*(c^2*x^2+1)^(9/2)+7/1600*c*
x*(c^2*x^2+1)^(7/2)+49/9600*c*x*(c^2*x^2+1)^(5/2)+49/7680*c*x*(c^2*x^2+1)^(3/2)+49/5120*(c^2*x^2+1)^(1/2)*c*x)
)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 429 vs. \(2 (173) = 346\).
time = 0.26, size = 429, normalized size = 2.16 \begin {gather*} \frac {1}{10} \, a c^{6} d^{3} x^{10} + \frac {3}{8} \, a c^{4} d^{3} x^{8} + \frac {1}{2} \, a c^{2} d^{3} x^{6} + \frac {1}{12800} \, {\left (1280 \, x^{10} \operatorname {arsinh}\left (c x\right ) - {\left (\frac {128 \, \sqrt {c^{2} x^{2} + 1} x^{9}}{c^{2}} - \frac {144 \, \sqrt {c^{2} x^{2} + 1} x^{7}}{c^{4}} + \frac {168 \, \sqrt {c^{2} x^{2} + 1} x^{5}}{c^{6}} - \frac {210 \, \sqrt {c^{2} x^{2} + 1} x^{3}}{c^{8}} + \frac {315 \, \sqrt {c^{2} x^{2} + 1} x}{c^{10}} - \frac {315 \, \operatorname {arsinh}\left (c x\right )}{c^{11}}\right )} c\right )} b c^{6} d^{3} + \frac {1}{1024} \, {\left (384 \, x^{8} \operatorname {arsinh}\left (c x\right ) - {\left (\frac {48 \, \sqrt {c^{2} x^{2} + 1} x^{7}}{c^{2}} - \frac {56 \, \sqrt {c^{2} x^{2} + 1} x^{5}}{c^{4}} + \frac {70 \, \sqrt {c^{2} x^{2} + 1} x^{3}}{c^{6}} - \frac {105 \, \sqrt {c^{2} x^{2} + 1} x}{c^{8}} + \frac {105 \, \operatorname {arsinh}\left (c x\right )}{c^{9}}\right )} c\right )} b c^{4} d^{3} + \frac {1}{4} \, a d^{3} x^{4} + \frac {1}{96} \, {\left (48 \, x^{6} \operatorname {arsinh}\left (c x\right ) - {\left (\frac {8 \, \sqrt {c^{2} x^{2} + 1} x^{5}}{c^{2}} - \frac {10 \, \sqrt {c^{2} x^{2} + 1} x^{3}}{c^{4}} + \frac {15 \, \sqrt {c^{2} x^{2} + 1} x}{c^{6}} - \frac {15 \, \operatorname {arsinh}\left (c x\right )}{c^{7}}\right )} c\right )} b c^{2} d^{3} + \frac {1}{32} \, {\left (8 \, x^{4} \operatorname {arsinh}\left (c x\right ) - {\left (\frac {2 \, \sqrt {c^{2} x^{2} + 1} x^{3}}{c^{2}} - \frac {3 \, \sqrt {c^{2} x^{2} + 1} x}{c^{4}} + \frac {3 \, \operatorname {arsinh}\left (c x\right )}{c^{5}}\right )} c\right )} b d^{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(c^2*d*x^2+d)^3*(a+b*arcsinh(c*x)),x, algorithm="maxima")

[Out]

1/10*a*c^6*d^3*x^10 + 3/8*a*c^4*d^3*x^8 + 1/2*a*c^2*d^3*x^6 + 1/12800*(1280*x^10*arcsinh(c*x) - (128*sqrt(c^2*
x^2 + 1)*x^9/c^2 - 144*sqrt(c^2*x^2 + 1)*x^7/c^4 + 168*sqrt(c^2*x^2 + 1)*x^5/c^6 - 210*sqrt(c^2*x^2 + 1)*x^3/c
^8 + 315*sqrt(c^2*x^2 + 1)*x/c^10 - 315*arcsinh(c*x)/c^11)*c)*b*c^6*d^3 + 1/1024*(384*x^8*arcsinh(c*x) - (48*s
qrt(c^2*x^2 + 1)*x^7/c^2 - 56*sqrt(c^2*x^2 + 1)*x^5/c^4 + 70*sqrt(c^2*x^2 + 1)*x^3/c^6 - 105*sqrt(c^2*x^2 + 1)
*x/c^8 + 105*arcsinh(c*x)/c^9)*c)*b*c^4*d^3 + 1/4*a*d^3*x^4 + 1/96*(48*x^6*arcsinh(c*x) - (8*sqrt(c^2*x^2 + 1)
*x^5/c^2 - 10*sqrt(c^2*x^2 + 1)*x^3/c^4 + 15*sqrt(c^2*x^2 + 1)*x/c^6 - 15*arcsinh(c*x)/c^7)*c)*b*c^2*d^3 + 1/3
2*(8*x^4*arcsinh(c*x) - (2*sqrt(c^2*x^2 + 1)*x^3/c^2 - 3*sqrt(c^2*x^2 + 1)*x/c^4 + 3*arcsinh(c*x)/c^5)*c)*b*d^
3

________________________________________________________________________________________

Fricas [A]
time = 0.38, size = 197, normalized size = 0.99 \begin {gather*} \frac {7680 \, a c^{10} d^{3} x^{10} + 28800 \, a c^{8} d^{3} x^{8} + 38400 \, a c^{6} d^{3} x^{6} + 19200 \, a c^{4} d^{3} x^{4} + 15 \, {\left (512 \, b c^{10} d^{3} x^{10} + 1920 \, b c^{8} d^{3} x^{8} + 2560 \, b c^{6} d^{3} x^{6} + 1280 \, b c^{4} d^{3} x^{4} - 79 \, b d^{3}\right )} \log \left (c x + \sqrt {c^{2} x^{2} + 1}\right ) - {\left (768 \, b c^{9} d^{3} x^{9} + 2736 \, b c^{7} d^{3} x^{7} + 3208 \, b c^{5} d^{3} x^{5} + 790 \, b c^{3} d^{3} x^{3} - 1185 \, b c d^{3} x\right )} \sqrt {c^{2} x^{2} + 1}}{76800 \, c^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(c^2*d*x^2+d)^3*(a+b*arcsinh(c*x)),x, algorithm="fricas")

[Out]

1/76800*(7680*a*c^10*d^3*x^10 + 28800*a*c^8*d^3*x^8 + 38400*a*c^6*d^3*x^6 + 19200*a*c^4*d^3*x^4 + 15*(512*b*c^
10*d^3*x^10 + 1920*b*c^8*d^3*x^8 + 2560*b*c^6*d^3*x^6 + 1280*b*c^4*d^3*x^4 - 79*b*d^3)*log(c*x + sqrt(c^2*x^2
+ 1)) - (768*b*c^9*d^3*x^9 + 2736*b*c^7*d^3*x^7 + 3208*b*c^5*d^3*x^5 + 790*b*c^3*d^3*x^3 - 1185*b*c*d^3*x)*sqr
t(c^2*x^2 + 1))/c^4

________________________________________________________________________________________

Sympy [A]
time = 2.09, size = 280, normalized size = 1.41 \begin {gather*} \begin {cases} \frac {a c^{6} d^{3} x^{10}}{10} + \frac {3 a c^{4} d^{3} x^{8}}{8} + \frac {a c^{2} d^{3} x^{6}}{2} + \frac {a d^{3} x^{4}}{4} + \frac {b c^{6} d^{3} x^{10} \operatorname {asinh}{\left (c x \right )}}{10} - \frac {b c^{5} d^{3} x^{9} \sqrt {c^{2} x^{2} + 1}}{100} + \frac {3 b c^{4} d^{3} x^{8} \operatorname {asinh}{\left (c x \right )}}{8} - \frac {57 b c^{3} d^{3} x^{7} \sqrt {c^{2} x^{2} + 1}}{1600} + \frac {b c^{2} d^{3} x^{6} \operatorname {asinh}{\left (c x \right )}}{2} - \frac {401 b c d^{3} x^{5} \sqrt {c^{2} x^{2} + 1}}{9600} + \frac {b d^{3} x^{4} \operatorname {asinh}{\left (c x \right )}}{4} - \frac {79 b d^{3} x^{3} \sqrt {c^{2} x^{2} + 1}}{7680 c} + \frac {79 b d^{3} x \sqrt {c^{2} x^{2} + 1}}{5120 c^{3}} - \frac {79 b d^{3} \operatorname {asinh}{\left (c x \right )}}{5120 c^{4}} & \text {for}\: c \neq 0 \\\frac {a d^{3} x^{4}}{4} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(c**2*d*x**2+d)**3*(a+b*asinh(c*x)),x)

[Out]

Piecewise((a*c**6*d**3*x**10/10 + 3*a*c**4*d**3*x**8/8 + a*c**2*d**3*x**6/2 + a*d**3*x**4/4 + b*c**6*d**3*x**1
0*asinh(c*x)/10 - b*c**5*d**3*x**9*sqrt(c**2*x**2 + 1)/100 + 3*b*c**4*d**3*x**8*asinh(c*x)/8 - 57*b*c**3*d**3*
x**7*sqrt(c**2*x**2 + 1)/1600 + b*c**2*d**3*x**6*asinh(c*x)/2 - 401*b*c*d**3*x**5*sqrt(c**2*x**2 + 1)/9600 + b
*d**3*x**4*asinh(c*x)/4 - 79*b*d**3*x**3*sqrt(c**2*x**2 + 1)/(7680*c) + 79*b*d**3*x*sqrt(c**2*x**2 + 1)/(5120*
c**3) - 79*b*d**3*asinh(c*x)/(5120*c**4), Ne(c, 0)), (a*d**3*x**4/4, True))

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(c^2*d*x^2+d)^3*(a+b*arcsinh(c*x)),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x^3\,\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,{\left (d\,c^2\,x^2+d\right )}^3 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a + b*asinh(c*x))*(d + c^2*d*x^2)^3,x)

[Out]

int(x^3*(a + b*asinh(c*x))*(d + c^2*d*x^2)^3, x)

________________________________________________________________________________________